

Journal of Organometallic Chemistry 501 (1995) 293-302

Wasserlösliche Phosphane V [☆]. Komplexe amphiphiler tertiärer Alkylphosphane mit Ammoniumgruppierungen in den Seitenketten

Antonella Heßler ^a, Stefan Kucken ^a, Othmar Stelzer ^{a,*}, Jörg Blotevogel-Baltronat ^b, William S. Sheldrick ^b

^a Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gauβstr. 20, D-42097 Wuppertal, Deutschland
 ^b Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Deutschland

Eingegangen den 27. April 1995

Abstract

Monocationic amphiphilic tertiary phosphines $[RMe_2N-(CH_2)_n-PR'_2]^+ X^- (1-3)$ obtained by P-alkylation of the corresponding primary phosphines (R' = H) form stable tungstencarbonyl-, Rh(I)-olefin- and square planar Pd(II)-complexes (4-8a). Stepwise protonation of $[Me_2N-(CH_2)_2]_3P$ (9) by Ph₃P · HBr or aqueous HCl affords tricationic tertiary phosphine ligands, e.g. { $[HMe_2N-(CH_2)_2]_3P^{3+} 3X^- (13, 13b)$ and the phosphonium salt { $[HMe_2N-(CH_2)_2]_3P-H^{4+} 4Cl^- (13a)$. The pK_a-values 9.67, 8.86, 7.92 and 1.9 have been obtained by titration of 13a with NaOH in aqueous solution. Highly charged Pd(II)-complexes (16a, 16b) with extreme water solubilities were obtained from 13 and PdBr₂ or by N-protonation of *cis*-PdCl₂(9)₂ with HCl. The crystal structures of $13 \cdot 0.5H_2O$ and {*trans*-{ $[HMe_2N-(CH_2)_2]_3P_2PdCl_2$ }⁶⁺ 6Cl⁻ · 2MeOH (16b) (space group C2/c) have been determined. While the P(···N)₃ skeleton of the trication in 13 is almost flat, it is folded back on coordination to palladium(II) in 16b.

Zusammenfassung

Monokationische amphiphile tertiäre Phosphane $[RMe_2N-(CH_2)_n-PR'_2]^+ X^- (1-3)$, dargestellt durch P-Alkylierung der entsprechenden primären Phosphane (R' = H), bilden stabile Wolframcarbonyl- und Rh(I)-Olefinkomplexe sowie quadratisch planare Palladium(II)-Komplexe (4–8a). Durch stufenweise Protonierung von $[Me_2N-(CH_2)_2]_3P$ (9) mit Ph₃P · HBr oder wäßriger HCl erhält man kationische tertiäre Phosphane, z.B. { $[HMe_2N-(CH_2)_2]_3P$ }³⁺ 3X⁻ (13, 13b), und das Phosphoniumsalz { $[HMe_2N-(CH_2)_2]_3P-H$ }⁴⁺ 4Cl⁻ (13a). Die pK_a-Werte (9.67, 8.86, 7.92 und 1.9) wurden durch Titration von 13a im wäßrigen Medium bestimmt. Durch Komplexierung von 13 mit PdBr₂ oder Protonierung von *cis*-PdCl₂(9)₂ mit überschüssiger HCl sind die hochgeladenen Pd(II)-Komplexe 16a, 16b zugänglich, die extrem hohe Löslichkeiten in Wasser aufweisen. Die Röntgenstrukturanalysen von 13 · 0.5H₂O (Raumgruppe P3) und {*trans*-{ $[HMe_2N-(CH_2)_2]_3P_2PdCl_2$ }⁶⁺ 6Cl⁻ · 2MeOH (16b) (Raumgruppe C2/c) wurden ermittelt. Das nahezu planare P(··· N)₃-Skelett des Trikations in 13 wird bei Koordination an Palladium(II) in 16b pyramidalisiert.

Keywords: Phosphines; Water soluble; X-ray diffraction; Palladium; Rhodium; Iron

1. Einleitung

Die breite Anwendung der Homogenkatalyse in der organischen Synthese wird durch die Schwierigkeit den eingesetzten Katalysator von den gebildeten Produkten zu trennen begrenzt. Bei Durchführung der katalytischen Reaktionen in Zweiphasensystemen Wasser/ organisches Lösungsmittel und unter Verwendung von Komplexkatalysatoren wasserlöslicher Phosphanliganden läßt sich dieses Problem in vielen Fällen in hervorragender Weise lösen [2a].

Von den verschiedenen in der Literatur beschriebenen wasserlöslichen Phosphanen sind insbesondere die vom TPPTS-Typ mit sulfonierten aromatischen Resten [2b] zu erwähnen. Wasserlösliche kationische Phosphane mit Ammoniumgruppierungen in den Seitenketten wurden dagegen bislang weniger untersucht. Neben AMPHOS (A) [3] und Derivaten des Bis[2-(diphenyl-

^{*} IV. Mitteilung siehe Lit. [1]. Herrn Prof. Dr. H. Schumann zum 60. Geburtstag gewidmet.

^{*} Corresponding author.

phosphino)ethyl]amins (**B**) [4] wurden (3R,4R)-3,4-Bis(diphenylphosphino-1,1-dimethyl-pyrollidiniumsalze (**C**) [5] und chirale Phosphane mit p-Di- bzw. Trimethylaniliumsubstituenten (**D**) [6] zur Synthese von Komplexkatalysatoren eingesetzt. Die kationischen Liganden **C** und **D** sind jedoch nicht in freiem Zustand zugänglich. Ihre Komplexverbindungen wurden durch N-Methylquaternisierung oder Protonierung der entsprechenden P-metallgeschützten Amine erhalten. Die vollständige N-Quaternisierung aller Aminogruppierungen, die den Einsatz starker Alkylierungsmittel wie z.B. $[Me_3O]^+BF_4^-$ erfordert, gelingt bei Liganden mit mehreren Aminogruppierungen, z.B. **D**, in den meisten Fällen nur unvollständig.

Durch selektive N-Quaternisierung und nachfolgende P-Alkylierung primärer Aminoalkylphosphane Me₂N-(CH₂)_n-PH₂ (n = 2, 3) [7] gelang es uns kürzlich, eine Reihe mono- und trikationischer tertiärer Phosphane [RMe₂N-(CH₂)_n-PR'₂]⁺ X⁻ und {[R["]Me₂N-(CH₂)₂]₃P}³⁺ 3X⁻ (R, R' = C_nH_{2n+1}; R" = H, Me; X = Cl, Br, I) mit Ammoniumgruppierungen in den Alkylseitenketten darzustellen [1]. Hier berichten wir nun über die Synthese von Komplexen dieser Liganden.

2. Komplexe der monokationischen tertiären Phosphane 1-3

Die Liganden 1–3 lassen sich durch P-Alkylierung der kationischen primären Phosphane $[RMe_2N-(CH_2)_2-PH_2]^+X^-$ [7] mit MeI in CH_2Cl_2 und nachfolgende Deprotonierung der dabei gebildeten Phosphoniumsalze $[RMe_2N-(CH_2)_2-PMe_2H]^{2+}$ 2X⁻ mit KOH oder radikalinitierte Addition von 1-Octen in Tetrahydrofuran/Wasser in guten Ausbeuten gewinnen (Gl. 1, 2) [1].

Die kationischen Phosphane 1 und 2 mit den langkettigen Alkylresten an den N-Atomen bilden stabile Komplexverbindungen, wie am Beispiel von 4 und 5 gezeigt werden konnte (Gl. 3, 4). Im Gegensatz zu den freien kationischen tertiären Phosphanen [1] zeigen ihre Komplexe keine Neigung zur N/P-Umalkylierung (Transquaternisierung) in polaren Lösungsmitteln wie Wasser oder Methanol. 4 und 5 sind kinetisch völlig stabil in Bezug auf Ligandenaustauschreaktionen. Das ³¹P{¹H}-NMR-Signal ($\delta = 23.9$ ppm) von 4 wird von den ¹⁸³W-Satellitenlinien [8] flankiert (${}^{1}J(WP) = 235$ Hz) (Tabelle 1). Im ¹³C{¹H}-NMR-Spektrum werden die Signale der axialen ($\delta C = 198.9$ ppm, ²J(PC) = 20.2, ${}^{1}J(WC) = 142$ Hz) und equatorialen CO-Liganden (δC = 196.6 ppm, ${}^{2}J(PC) = 7.1$, ${}^{1}J(WC) = 124.9$ Hz), die infolge der Kopplung $^{2}J(PC)$ (*trans* bzw. *cis*) Dublettfeinstruktur zeigen, von den ¹⁸³W-Satelliten begleitet (Tabelle 2). Das ³¹P{¹H}-NMR-Signal des Rh(1)-Komplexes 5 ist aufgrund der ¹⁰³Rh-³¹P-Kopplung in ein Dublett aufgespalten. Die Kopplungskonstante ${}^{1}J({}^{103}Rh-{}^{31}P)$ (150 Hz) liegt in dem für Rh(I)-Komplexe analoger Zusammensetzung typischen Bereich [9]. Für die zum P-Atom cis- bzw. trans-ständigen olefinischen C-Atome des COD-Liganden von 5 werden im ¹³C{¹H}-NMR-Spektrum getrennte Signale beobachtet. Entsprechendes gilt für die jeweiligen CH2-Gruppierungen.

Der kationische Ligand **3** mit den langen Alkylresten am P-Atom bildet bei Umsetzung mit [RhCl(COD)]₂ eine zu **5** analoge Komplexverbindung **6** (Gl. 4). Im Gegensatz zu **5** zeigen die ¹³C{¹H}-NMR-Signale der olefinischen C-Atome des COD-Liganden ¹⁰³Rh-¹³Cund ³¹P-¹³C-Kopplungsfeinstruktur. Die Resonanz bei $\delta C = 105.8$ ppm mit der Dublett-von-Dublett Aufspaltung (¹J(¹⁰³Rh-¹³C) = 11.6, ²J(³¹P-¹³C) = 6.4 Hz) wird dem zum P-Atom transständigen C=C-Doppelbindungssystem zugeordnet, während das Dublett bei 70.9 ppm (¹J(¹⁰³Rh-¹³C) = 14.1 Hz) den *cis*-ständigen olefinischen C-Atomen entspricht [10].

Mit einer Suspension von Palladium(II)bromid in CH_2Cl_2 reagiert 3 im molaren Verhältnis 1:2 unter Bildung von trans-PdBr₂(3)₂ (7, $\delta P = 9.1$ ppm) (Gl. 5). Wird überschüssiger Ligand 3 eingesetzt (molares Verhältnis 1:3), so erhält man eine Komplexverbindung der Zusammensetzung PdBr₂(3)₃ (Gl. 6). Die aufgrund der Sperrigkeit der Liganden und der Coulomb-Wechselwirkung der Ammoniumgruppierungen besonders begünstigte *trans*-Struktur von 7 wird durch die TriTabelle 1

 ${}^{31}P{1}H$ -NMR-Daten von 1–7, 8a, 9–13, 13a, 14, 15, 16a, 16b, 17. Chemische Verschiebung δP rel. zu 85 proz. H₃PO₄ (extern), Kopplungskonstanten in Hz (in Klammern)^a

1	- 50.9	11	22.6(147) °
2	- 50.7	12	65.1
3	-34.2	13	-36.9
4	23.9(235) ^b	13a	4.2
5	4.8(150) °	14	-91.6(197) ^d
6	14.6(147) ^c	15	-91.4(197) ^d
7	9.1	16a	7.4
8a	11.6	16b	7.7
9	-36.8	17	40.4
10	58.4		

^a Lösungsmittel: Reinsubstanz (9), C_6D_6 (10, 11, 14), H_2O (13), D_2O (5, 12, 16a, 16b), CD_2Cl_2 (1, 2, 4, 6, 7), THF (3), konz. HCl (13a), DMSO-d⁶ (15), CD_3OD (8a, 17). ^b ¹J(¹⁸³W-³¹P). ^{c¹J(¹⁰³Rh-³¹P). ^{d¹J</sub>(³¹P-¹H).}}

plett-Aufspaltung der Signale der zum P-Atom aständigen C-Atome (X-Teile von ABX-Spinsystemen, A, B = 31 P, X = 13 C) im 13 C{¹H}-NMR-Spektrum von 7 belegt [11,12]. Die Komplexverbindung der Zusammensetzung $PdBr_2(3)_3$ zeigt im ³¹P{¹H}-NMR-Spektrum (Lösungsmittel CD₃OD) selbst bei -60°C nur ein Signal bei 11.6 ppm. Wir schlagen für $PdBr_2(3)_3$ eine ionogene Struktur 8a mit quadratisch planarer Ligandenanordnung am Palladium vor [13]. Das Vorliegen eines neutralen Dibromokomplexes 8c mit trigonal bipyramidaler Koordinationsgeometrie [14] und äquivalenten Liganden bzw. dynamischer Stereochemie [15] im polaren Lösungsmittel CD₃OD kann ausgeschlossen werden. Für die Äquilibrierung der Liganden auf der Zeitskala des NMR-Experiments ist die Dissoziation von 8a unter Bildung von 7 im Gleichgewicht (Gl. 7a), möglicherweise unter Einbeziehung des quadratisch pyramidalen Zwischenprodukts 8b [16], verantwortlich (Gl. 7b, 7c). Anstelle des für 8a im ${}^{31}P{}^{1}H$ -NMR-Spektrum zu erwartenden Linienmusters eines AB2-Spinsystems wird dann ein Singulett beobachtet (A₃-Spinsystem). Lösungen von $PdBr_2(3)_3$, denen ein Äquivalent des Liganden 3 zugesetzt wurde, zeigen im ³¹ P{¹H}-NMR-Spektrum neben einem Signal bei $\delta P =$ 11.8 ppm ein stark verbreitertes Singulett (Halbwertsbreite ca. 200 Hz), dessen chemische Verschiebung im Vergleich zu der des freien Liganden ($\delta P =$ -34.2 ppm) um ca. 10 ppm tieffeldverschoben ist.

Diese experimentellen Befunde belegen den vorgeschlagenen Austauschprozeß unter Beteiligung des Phosphanliganden.

3. Komplexe trikationischer Phosphane {[RMe₂N- $(CH_2)_2$]₃P $^{3+}$ 3X⁻

Trikationische Phosphane des Typs { $[RMe_2N-(CH_2)_2]_3P$ }³⁺ 3X⁻ lassen sich durch Protonierung oder Quaternisierung des basischen Tripodliganden $[Me_2N-(CH_2)_2]_3P$ (9) [1] darstellen. Während die Protonierung der freien Aminoalkylphosphane des Typs 9 ausschließlich am stärker basischen N-Atom erfolgt (siehe unten), ist eine selektive N-Quaternisierung mit Alkylhalogeniden aufgrund der im Vergleich zum N-Atom größeren Nucleophilie des Phosphors [17] jedoch nicht möglich. Dies gelingt erst nach Einführung einer Schutzgruppe z.B. durch Komplexierung des P-Atoms von $[Me_2N-(CH_2)_2]_3P$ (9).

Der Tripodligand **9** reagiert mit $Fe_2(CO)_9$ bzw. [Rh(COD)Cl]₂ unter Bildung der Komplexe **10** bzw. **11** (Gl. 8, 9).

Der Fe(0)-Komplex 10 zeigt im CO-Valenzschwingungsbereich des IR-Spektrums drei Banden (2044, 1970, 1964 cm^{-1}), die auf eine axiale Position des Liganden 9 im trigonal-bipyramidalen Koordinationspolyeder hinweisen (C_{3v} -Symmetrie) [18]. Im ³¹P{¹H}-NMR-Spektrum von 10 wird ein Signal bei $\delta P = 58.4$ ppm beobachtet, das im Vergleich zu dem von 9 um 95 ppm nach niedrigem Feld verschoben ist. Das ³¹P-{¹H}-NMR-Signal ($\delta \vec{P} = 22.6 \text{ ppm}$) des quadratisch planaren Rh(I)-Komplexes 11 ist infolge der ¹⁰³Rh-³¹P-Kopplung $({}^{1}J({}^{103}\text{Rh}{}^{-31}\text{P}) = 147 \text{ Hz})$ in ein Dublett aufgespalten. Der COD-Ligand unterliegt einem raschen Austauschprozeß, der zur starken Linienverbreiterung und Koaleszenz der ¹³C{¹H}-NMR-Signale der C-Atome der beiden unterschiedlichen olefinischen und aliphatischen Gruppierungen (cis- bzw. trans-ständig zum P-Atom) führt. Im ¹³C¹H-NMR-Spektrum zeigt 11 für die CH₂-Gruppierungen ein gemitteltes Signal bei $\delta C =$ 31.3 ppm, für die olefinischen C-Atome wird keine Resonanz beobachtet. Erst bei -60° C werden getrennte Signale für die cis- und trans-ständigen C-Atome des COD-Liganden (δ (=CH) = 108.6, 74.6; ¹J(¹⁰³Rh-¹³C)

Py = Pyridin COD = 1,5-Cyclooctadien

= 13.2 Hz, $\delta(CH_2) = 33.4$, 29.7 ppm) beobachtet. Ähnliche Austauschprozesse wurden an zu 11 analogen Rh(I)-Komplexen in der Literatur bereits beschrieben [19].

Der Eisen(0)-Komplex 10 läßt sich bereits mit überschüssigem MeBr im geschlossenen System glatt unter Bildung des trikationischen Komplexes 12 quaternisieren (Gl. 10). 12 zeigt im CO-Valenzschwingungsbereich des IR-Spektrums drei Banden (2060, 1987, 1965 cm⁻¹), die jedoch im Vergleich zu 10 zu höheren

Tabelle 2

 $^{13}C{^1H}$ -NMR-spektroskopische Daten von 4–8a, 10–15, 16b, 17. Chemische Verschiebung δC rel. zu TMS, Kopplungskonstanten $^nJ(PC)$ in Hz (in Klammern)

	C1 ª	C2 ^a	C3 ^a	R(N) ^b	R(P) °	L ^d
4	27.5	61.1	51.1	é	19.6	196.6 (7.1) ^f , (124.9) ^g
	(21.9)	(7.6)			(28.5)	$198.9 (20.2)^{\text{f}}, (142)^{\text{g}}$
5	23.8	59.7	52.3	h	10.9	70.5; 105.6 ⁱ
					(28.2)	29.4; 34.4 ^j
6	19.2	64.9	53.9		n	70.9 (14.1) ^{i,k}
						105.8 (11.6) ^{i,k} (6.4) ¹
	(24.0)	(14.4)				(6.4) ¹ ; 29.8; 34.5 ^j
7	18.3	62.1	53.3		n	
	(25.6) ^m					
8a	19.8	63.8	53.9		n	
	(24.7) ^m					
10	28.4	54.7	45.1			214.2 (19.5) ^f
	(27.6)					
11	20.7	55.9	45.6			31.3 ^{j,o}
	(23.8)					
12	24.5	61.5	53.4			211.6 (19.4) ^f
	(27.3)	(9.4)				
13	21.5	55.6	43.4			
	(15.1)	(26.5)				
14	24.0	48.5			4.2	
	(10.4)	(10.1)			(12.6)	
15	18.0	45.6			2.4	
	(13.0)	(9.9)			(11.7)	
16b	19.8	53.6	43.8			
	(27.4) ^m	(8.7) ^m				
17	25.7	57.2	46.6			
	(30.1) ^m					

^a Indizierung der C-Atome: -Me(3)₂N-C(2)-C(1)-P. ^b N-ständige Reste. ^c P-ständige Reste. ^d CO-Liganden bzw. COD-Liganden. ^e C₈H₁₇: N-C(1)-C(8): 65.0, 22.7, 26.0, 28.9, 29.0 (nicht eindeutig zuzuordnen), 31.5, 22.5, 13.8. ^f CO (equatorial), CO (axial). ^{g 1}J(¹⁸³W-¹³C). ^h C₁₂H₂₅: N-C(1)-C(12): 64.4 (C(1)), 27.1 (C(3)), 33.0 (C(10)), 14.8 (C12)); die übrigen Signale waren nicht sicher zuzuordnen. ⁱ COD (C=C), *cis*, *trans*-P. ^j COD (CH₂) *cis*, *trans*-P. ^{k 1}J(¹⁰³Rh-¹³C). ^{1 2}J(³¹P-¹³C). ^m N, X-Teil von ABX-Spektrum. ⁿ C₈H₁₇: P-C(1)-C(8): **6**: 22.4(24.3), 25.2, 32.5(11.7), 30.5, 30.6, 33.2, 24.0, 14.9; **7**: 23.7 (27.2 ^m), 24.3, 30.9 (13.5 ^m), 29.0, 29.1, 31.7, 22.5, 13.8; **8a**: 25.8 (28 ^m), 26.0, 32.5 (12.2 ^m), 30.5, 30.6, 33.2, 24.0, 14.9. ^o olefinische COD-Signale bei 25°C nicht beobachtet. -60°C: 74.6 (13.2), 108.6 (breit), 29.7, 33.4.

Frequenzen verschoben sind. Dies deutet auf eine Abnahme des σ -Donatorcharakters [20] des Tripodliganden bei Quaternisierung durch den induktiven Effekt der γ -ständigen Ammoniumgruppierungen hin.

Tertiäre Alkylamine sind stärkere Basen als Phosphane mit vergleichbaren Substituenten [21]. Mit drei Äquivalenten Ph₃P · HBr reagiert 9 daher im Zweiphasensystem CH₂Cl₂/H₂O glatt unter Bildung des trikationischen Phosphans 13 (Gl. 11). Das bei der Reaktion freigesetzte Ph₃P löst sich in CH₂Cl₂ und läßt sich auf einfache Weise vom wasserlöslichen 13 abtrennen [1]. Nach diesem Verfahren gelingt es auch, zweizähnige sekundäre Aminoalkylphosphane selektiv am N-Atom zu protonieren, wie am Beispiel von [H(Me)P-(CH₂)₂]₂NH [22] gezeigt werden konnte (Gl. 13).

Die geringe Änderung der chemischen Verschiebung δP bei der Bildung von 13 ($\delta P = -36.9$ ppm) aus 9 $(\delta P = -36.8 \text{ ppm})$ belegt, daß die Protonierung ausschließlich an den N-Atomen erfolgt. 13 ist in festem Zustand gegenüber Sauerstoff völlig stabil. In wäßriger Lösung erfolgt erst nach mehreren Wochen in geringem Umfang Oxidation. Das neutrale 9 wird dagegen durch Sauerstoff rasch oxidiert. Die Protonierung des P-Atoms von 9 erfolgt erst im stark sauren Medium. Löst man 9 oder 13 in überschüssiger konzentrierter Salzsäure, so bildet sich das Phosphoniumsalz 13a (Gl. 12), das im ³¹P{¹H}-NMR-Spektrum ein Signal bei $\delta P = +4.2$ ppm zeigt. Infolge des raschen Protonen-Austausches wird im ³¹P-NMR-Spektrum keine ³¹P-¹H-Kopplungsfeinstruktur ${}^{1}J({}^{31}P-{}^{1}H)$ beobachtet. Aus der potentiometrischen Titration von 13a mit NaOH im System Wasser/NaCl/HCl bei 25°C lassen sich die Existenzbereiche der unterschiedlich protonierten Derivate (13a, 13b, 13c, 13d) und 9 in Abhängigkeit vom pH-Wert und deren pK_a-Werte ableiten (Abb. 1, Schema 1).

Der pK_a-Wert für die Protonierung des Phosphors ist im Vergleich zu dem von PEt₃ (8.69) bzw. Pr₃P (8.64) stark abgesenkt und etwa dem von $[NC-(CH_2)_2]_3P$ (pK_a \approx 1.4) vergleichbar [23,24]. Dies ist auf den induktiven – I-Effekt der drei γ -ständigen HMe₂N⁺-Gruppierungen zurückzuführen, der, wenn auch in geringerem Umfang, zur Abnahme der pK_a-Werte von 13b, 13c und 13d führt (vgl. Pr₃N: 10.53, Bu₃N: 10.60)

Abb. 1. Relative Häufigkeit von 9 und der davon abgeleiteten Spezies 13a-13d in Abhängigkeit vom pH-Wert (25°C, wäßrige Lösung).

[25]). Im pH-Wert-Bereich von 3 bis 7 liegt vorwiegend das trikationische Phosphan **13b** vor. Für die zum Kation von **13b** analoge Stickstoffverbindung {[HNMe₂-(CH₂)₂]₃N}³⁺ findet man eine analoge Abstufung der pK_a -Werte (pK_a^{1-3} : 8.17, 9.33, 10.15 [26]).

Der trikationische Ligand 13 bildet mit PdBr₂ in Methanol/Wasser einen Palladium(II)-Komplex 16a der Zusammensetzung {PdBr₂[(HNMe₂-(CH₂)₂)₃P]₂}⁶⁺ 6Br⁻ (Gl. 15). Das Chlor-Analoge 16b erhält man durch erschöpfende Protonierung von PdCl₂[(Me₂N-(CH₂)₂)₃P]₂ (17) mit konzentrierter HCl (Gl. 16). 17 wurde entsprechend Gl. 17 durch Umsetzung von PdCl₂(PhCN)₂ mit 9 in MeOH dargestellt.

Die ¹³C(¹H)-NMR-Signale der C-Atome der Bismethylenbrücke P-C(1)H₂-C(2)H₂-N von **16b** (X-Teile von ABX-Spektren, A, $B = {}^{31}P$, $X = {}^{13}C$) zeigen Triplettfeinstruktur. Dies deutet auf eine trans-Anordnung der P-Atome mit großer ${}^{31}P - {}^{31}P$ -Kopplung hin (J(AB) > | J(AX) - J(BX) |, [11,12]). Im Falle von **17** zeigt die Resonanz von C(1) dagegen Dublettaufspaltung, während für C(2) ein Singulett beobachtet wird. **17** kommt daher eine cis-Struktur zu (J(AB) < | J(AX) - J(BX) |). In quadratisch planaren Komplexen L_2MX_2 (L = Phosphanliganden, M = Ni, Pd, Pt, X =

Halogenid) ist ²J(PP) im trans-Isomeren stets größer als für die cis-Form [12]. Die Strukturzuordnung für 16a bzw. 16b und 17 wird durch die Größe der Koordinationsverschiebung $\Delta\delta P$ ($\Delta\delta P = \delta P(\text{Komplex}) - \delta P(\text{Ligand})$) gestützt. $\Delta\delta P$ ist für cis-Komplexe stets gößer als für die entsprechenden trans-Komplexe (vgl. 16a: 44.3, 16b: 44.6, 17: 77.2 ppm) [27]. Bei Protonierung des Palladiumkomplexes 17 findet offensichtlich eine cis-trans-Umlagerung statt. Treibende Kraft ist die starke Coulomb-Wechselwirkung der trikationischen Phosphanliganden, die bestrebt sind möglichst großen Abstand voneinander einzunehmen.

Im Gegensatz zu 17 zeigen die hochgeladenen Komplexe 16a und 16b eine nahezu unbegrenzte Löslichkeit in Wasser (ca. 5 kg pro kg H_2O , 25°C).

4. Struktur des trikationischen Phosphans 13 und seines Palladium(II)-Komplexes 16b

Das trikationische Phosphan 13 kristallisierte aus einer konzentrierten wäßrigen Lösung in Form farbloser Prismen der Zusammensetzung 13 · 0.5H₂O (Raumgruppe P3). Die Elementarzelle enthält zwei unabhängige Wassermoleküle, die zur Erniedrigung der Symmetrie führen. Die beiden unabhängigen Moleküle von 13 sind in erster Näherung durch ein pseudosymmetrisches Inversionszentrum verknüpft, was zu einer starken Korrelation der Positionsparameter führt. Eine anisotrope Verfeinerung der Lageparameter der N-, C- und P-Atome war daher nicht sinnvoll. Die Strukturanalyse von $13 \cdot 0.5H_2O$ (Tabellen 4 und 5) zeigt, daß die $HNMe_2^+$ -(CH₂)₂-Substituenten das zentrale P-Atom in trigonaler Anordnung umgeben und eine flache Scheibe bilden (Abb. 2a) (C-P-C-Winkel 97.3 bzw. 99.8°). Die P-CH₂-CH₂-N-Einheiten liegen ähnlich wie in $[Me_3N-(CH_2)_2-PH_2]^+I^-$ [7] in der antiperiplanaren Konformation [28] vor. Die Kationen von 13 sind im Kristallverband in Schichten angeordnet, die durch

9(L)

Abb. 2. (a) Struktur des Kations von **13** P(1)–C(1) 1.85(1), C(1)–C(2) 1.53(3), N(1)–C(2) 1.49(2), P(11)–C(11) 1.85(1), C(11)–C(22) 1.54(2), N(11)–C(22) 1.48(2) Å; C(1)–P(1)–C(1A) 97.3(7), P(1)–C(1)–C(2) 112.1(12), C(11)–P(11)–C(11A) 99.8(7), P(11)–C(11)–C(22) 111.9(13) (b) Packung von **13** \cdot 0.5H₂O im Festkörperzustand.

Br⁻-Ionen über N-H \cdots Br-Brücken (N(11) \cdots Br(11) = 3.18; N(1) \cdots Br(1) = 3.25 Å) miteinander verknüpft sind (Abb. 2b, Translation x, y, 1 + z).

$$\left\{ \left[HMe_{2}N - (CH_{2})_{2} \right]_{3}PH \right\}^{4+} 4Cl^{-} \xrightarrow{a) pK_{a^{1}}}_{HCl (14a)} \left\{ \left[HMe_{2}N - (CH_{2})_{2} \right]_{3}P \right\}^{3+} 3Cl^{-} \right. \\ \left. 13a \left(H_{4}L \right) \\ \left. a^{3} \right) \right\| \stackrel{HCl pK_{a^{2}}}{(14b)} \\ \left\{ HMe_{2}N - (CH_{2})_{2} - P[(CH_{2})_{2} - NMe_{2}]_{2} \right\}^{+} Cl^{-} \xrightarrow{a) pK_{a^{2}}}_{HCl (14c)} \left\{ \left[HMe_{2}N - (CH_{2})_{2} \right]_{2}P - (CH_{2})_{2} - NMe_{2} \right\}^{2+} 2Cl^{-} \\ \left. 13d(HL) \\ \left. pK_{a^{*}} a \right) \right\| \stackrel{HCl}{(14d)} \\ \left. a) NaOH / - NaCl, - H_{2}O \\ \left[Me_{2}N - (CH_{2})_{2} \right]_{3}P \\ pK_{a^{1}} = 1.9 \pm 0.1 \\ pK_{a^{1}} = 1.9 \pm 0.1 \\ pK_{a^{3}} = 8.86 \pm 0.04 \\ pK_{a^{2}} = 9.67 \pm 0.02 \\ \end{array}$$

Abb. 3. Struktur des Kations von 16b.

Die Palladiumverbindung 16b fällt beim Umkristallisieren aus heißem Methanol in Form von blaßgelben Nadeln der Zusammensetzung {PdCl₂[(HMe₂N- $(CH_2)_2_3P]_2$ ⁶⁺ 6Cl⁻· 2CH₃OH (Raumgruppe C2/c) an. Das Pd-Atom ist in schwach verzerrter trans-quadratisch planarer Anordnung von zwei trikationischen Liganden $(P(1)-Pd-P(1a) = 175.3(1)^\circ)$ und zwei Cl-Atomen $(Cl(1)-Pd-Cl(1a) = 174.4(1)^{\circ})$ umgeben (Abb. 3, Tabelle 3). Die Pd-P- und Pd-Cl-Abstände (Pd-P(1) = 2.315(1), Pd-Cl(1) = 2.283(1) Å) lassen sich mit den für neutrale Komplexe des Typs trans-L₂PdCl₂ gefundenen Werten gut vergleichen (vgl. trans-(PEt₃)₂-PdCl₂: Pd-P = 2.315(1), Pd-Cl = 2.326(1) Å [29]). Die C-Atome C(1) bzw. C(1a) sind in Bezug auf die P(1)-Pd-P(1a)-Achse trans-ständig zueinander angeordnet und nehmen eine ekliptische Position relativ zu Cl(1) bzw. Cl(1a) ein, während sich C(5) und C(9) bzw. C(5a) und C(9a) in gauche-Position hierzu befinden. Die C-C-

Tabelle 3

Bindungslängen (Å) und -winkel (°) des Kations von $16b \cdot 2CH_3OH$

und N-C-Bindungsabstände in 13 und 16b stimmen innerhalb der Fehlergrenzen überein. Die C-P-C-Bindungswinkel in **16b** (C(1)-P(1)-C(5) = 104.6(1),C(1)-P(1)-C(9) = 103.5(1), C(5)-P(1)-C(9) = $104.5(1)^{\circ}$) unterscheiden sich nur wenig und sind im Vergleich zu denen in 13 aufgeweitet. Durch die Coulomb-Wechselwirkung der HMe₂N⁺-Substituenten wird der Öffnungswinkel $P(\dots N)_3$ der beiden an das Palladium gebundenen trikationischen Liganden komprimiert. Die Methanol-Moleküle in 16b 2CH₃OH liegen als Solvat vor. Eine koordinative Wechselwirkung mit Pd(II) sowie die Ausbildung von Wasserstoff-Brückenbindungen $(N \cdots H \cdots O bzw.$ $Cl \cdots H \cdots O$) kann aufgrund der in der Einheitszelle gefundenen kürzesten Abstände Pd · · · O, N · · · O und Cl · · · O ausgeschlossen werden.

5. Experimenteller Teil

Allgemeine Arbeitsbedingungen und Geräte siehe Lit [7]. Die Phosphane 1-3, 9 und 14 [1,22] wurden nach Literaturvorschriften dargestellt.

5.1. Darstellung von 4

Pyridin-pentacarbonyl-wolfram(0) [30] (0.48 g; 1.2 mmol) und 0.44 g (1.2 mmol) 1 wurden 5 d bei Raumtemp. in 10 ml CH_2Cl_2 gerührt. Nach Beendigung der Reaktion wurden die flüchtigen Anteile i. Vak. abgezogen und der verbleibende Rückstand zweimal mit je 10 ml PE 40/60 gewaschen. Zur weiteren Reinigung

8 8		3		
Pd-Cl(1)	2.283(1)	Pd-P(1)	2.315(1)	
P(1)-C(1)	1.818(2)	P(1)-C(5)	1.825(3)	
P(1)-C(9)	1.822(3)	N(1)-C(2)	1.489(3)	
N(1)-C(3)	1.484(5)	N(1)-C(4)	1.479(5)	
N(2)-C(6)	1.493(3)	N(2)-C(7)	1.483(4)	
N(2)-C(8)	1.485(4)	N(3)-C(10)	1.493(3)	
N(3)-C(11)	1.474(3)	N(3)-C(12)	1.481(4)	
C(1)-C(2)	1.522(4)	C(5)–C(6)	1.517(3)	
C(9)-C(10)	1.512(4)			
Cl(1) - Pd - P(1)	91.8(1)	Cl(1)-Pd-Cl(1a)	174.4(1)	
P(1)-Pd-Cl(1a)	88.0(1)	Cl(1)-Pd-P(1a)	88.0(1)	
P(1)-Pd-P(1a)	175.3(1)	Pd-P(1)-C(5)	115.3(1)	
Pd-P(1)-C(1)	117.7(1)	Pd-P(1)-C(9)	109.8(1)	
C(1)-P(1)-C(5)	104.6(1)	C(5)-P(1)-C(9)	104.5(1)	
C(1)-P(1)-C(9)	103.5(1)	C(2) - N(1) - C(4)	112.9(2)	
C(2)-N(1)-C(3)	110.8(2)	C(6) - N(2) - C(7)	113.3(2)	
C(3)-N(1)-C(4)	110.9(3)	C(7) - N(2) - C(8)	110.0(2)	
C(6)-N(2)-C(8)	110.2(2)	C(10)-N(3)-C(12)	110.3(2)	
C(10)-N(3)-C(11)	114.5(2)	P(1)-C(1)-C(2)	113.9(2)	
C(11)-N(3)-C(12)	110.2(2)	P(1)-C(5)-C(6)	114.6(2)	
N(1)-C(2)-C(1)	111.6(2)	P(1)-C(9)-C(10)	113.8(2)	
N(2)-C(6)-C(5)	112.7(2)	N(3)-C(10)-C(9)	111.8(2)	

wurde aus CH_2Cl_2 bei $-30^{\circ}C$ umkristallisiert. Ausb. 0.76 g (91%).

Gef.: C, 32.13; H, 4.72; N, 2.27. $C_{19}H_{33}INO_5PW$ (697.2) ber.: C, 32.73; H, 4.77; N, 2.01%.

5.2. Darstellung von 5 und 6

Die Lösung von 0.38 g (0.77 mmol) bzw. 0.46 g (0.93 mmol) [RhCl(COD)Cl]₂ [31] in 10 ml CH₂Cl₂ wurde innerhalb von 90 min mit 0.55 g (1.54 mmol) $2 \cdot H_2O$ bzw. 0.79 g (1.86 mmol) 3, gelöst jeweils in 10 ml CH₂Cl₂, versetzt und 1 h bei Raumtemp. gerührt. Nach Abziehen des Lösungsmittels i. Vak. (20°C, 0.1 mbar) wurde der verbleibende Rückstand zweimal mit 5 ml PE 40/60 gewaschen und bei -78° C aus Methanol umkristallisiert. Dabei fielen 5 und 6 als orangefarbene klebrige Feststoff an. Ausbeuten: 0.71 g (76%) $5 \cdot H_2O$; 0.96 g (77%) 6.

5: Gef.: C, 49.97; H, 9.29; N, 2.32. $C_{26}H_{53}Cl_2NPRh \cdot H_2O$ (602.5) ber.: C, 51.83: H, 9.20; N, 2.32%.

6: Gef.: C, 49.74; H, 8.81; N, 1.80. C₂₉H₅₉BrClNPRh (671.0) ber.: C, 51.91: H, 8.86; N, 2.09%.

5.3. Synthese von 7 und 8a

Die Suspensionen von 0.20 g (0.75 mmol) bzw. 0.18 g (0.68 mmol) PdBr₂ in 10 ml CH₂Cl₂ wurden im Verlaufe von 1 h mit den Lösungen von 0.64 g (1.51 mmol) bzw. 0.87 g (2.05 mmol) **3**, gelöst in 10 ml CH₂Cl₂ versetzt. Nach einstündigem Rühren wurde das Reaktionsgemisch abfiltriert und das Filtrat i. Vak. eingeengt. Die dabei anfallenden Rohprodukte wurden aus Methanol bei -78° C umkristallisiert. Ausbeuten: 0.76 g (91%) **7**, 0.90 g (86%) **8a**.

7: Gef.: C, 43.76; H, 8.26; N, 2.50. $C_{42}H_{94}Br_4N_2P_2Pd$ (1115.2) ber.: C, 45.23; H, 8.50; N, 2.51%.

8a: Gef.: C, 47.72; H, 9.21; N, 2.77. $C_{63}H_{141}Br_5N_3$ -P₃Pd (1539.6) ber.: C, 49.14; H, 9.23; N, 2.73%.

5.4. Darstellung von 10 und 12

(a) Zu einer Lösung von 3.3 g (13.3 mmol) 9 in 40 ml PE wurden 4.9 g (13.5 mmol) $Fe_2(CO)_9$ gegeben. Nach 15 h Rühren bei Raumtemp. wurden alle flüchtigen Bestandteile i. Vak. (1 mbar) abgezogen, der Rückstand in 25 ml Methylenchlorid aufgenommen und filtriert. Nach Einengen des Filtrats verblieb ein dunkelbraunes hochviskoses Öl, das bei weiterem Trocknen i. Vak. (0.1 mbar) zu einer wachsartigen Masse erstartte. Das Rohprodukt wurde durch Kurzwegdestillation im Hochvakuum (0.03 mbar) gereinigt. Dabei fiel 10 als gelb gefärbte Flüssigkeit an. Ausb.: 5.2 g (94%) 10. Sdp.: 150–155°C, 0.03 mbar.

(b) Zu 0.78 g (1.9 mmol) **10**, gelöst in 10 ml MeOH, wurden 5.3 g (55.8 mmol) Methylbromid bei -78° C aufkondensiert und die Reaktionslösung nach Erwärmen

auf Raumtemp. 3 d im geschlossenen System gerührt. Nach Abziehen des Lösungsmittels und des überschüssigen Methylbromids bei 20°C, 0.1 mbar verblieb 12 in Form einer wachsartigen Substanz, die bis zur Gewichtskonstanz i. Vak. getrocknet wurde. Ausb.: 1.2 g (90%) 12.

10: Gef.: C, 46.56; H, 7.15; N, 10.06. $C_{16}H_{30}FeN_{3}-O_{4}P$ (415.2) ber.: C, 46.28; H, 7.28; N 10.12%.

12: Gef.: C, 32.22; H, 5.86; N, 6.10. $C_{19}H_{39}Br_{3}$ -FeN₃O₄P (700.1) ber.: C, 32.60; H, 5.62; N, 6.00%.

5.5. Darstellung von 11

Zu einer Lösung von 1.48 g (3.0 mmol) [RhCl-(COD)]₂ in 10 ml Methanol wurden 1.48 g (6.0 mmol) 9, gelöst in 10 ml Methanol, getropft. Nach 1 h Rühren bei Raumtemp. wurden alle flüchtigen Anteile i. Vak. (20°C, 0.1 mbar) entfernt. Die Umkristallisation aus Methanol lieferte **11** als orangefarbenen mikrokristallinen Feststoff. Ausb.: 2.6 g (88%).

Gef.: C, 48.28; H, 8.33; N, 8.34. $C_{20}H_{42}CIN_3PRh$ (493.9) ber.: C, 48.63; H, 8.57; N, 8.51%.

5.6. Protonierung von 9 und 14

Die Lösungen von 2.6 g (10.5 mmol) 9 bzw. 0.9 g (5.5 mmol) 14 in 20 ml CH_2Cl_2 wurden mit einer Suspension von 10.8 g (31.5 mmol) bzw. 1.9 g (5.5 mmol) $Ph_3P \cdot HBr$ versetzt und 15 min gerührt. Anschließend wurden 50 ml Wasser zugegeben und das Reaktionsgemisch weitere 5 min gerührt. Die wäßrige Phase wurde abgetrennt und viermal mit je 15 ml CH_2Cl_2 gewaschen. Nach Abziehen des Wassers i. Vak. wurde der verbleibende Rückstand aus Methanol/Wasser bzw. Wasser umkristallisiert. Ausbeuten: 4.9 g (95%) 13, 1.2 g (89%) 15.

13: Gef.: C, 29.53; H, 6.79; N, 8.64. $C_{12}H_{33}Br_3N_3P$ (490.1) ber.: C, 29.41; H, 6.79; N, 8.57%.

15: Gef.: C, 28.68; H, 7.33; N, 6.10. $C_6H_{18}BrNP_2$ (246.1) ber.: C, 29.29; H, 7.37; N, 5.69%.

5.7. Darstellung von 17, 16a und 16b

(a) Zu einer Suspension von 0.58 g (2.2 mmol) PdBr₂ in 10 ml Methanol wurde im Verlauf von 30 min eine Lösung von 2.14 g (4.4 mmol) **13** in 10 ml Wasser getropft. Die Reaktionslösung wurde 30 min bei Raumtemp. gerührt und anschließend i. Vak. eingeengt. Die Reinigung erfolgte durch Umkristallisation aus Methanol bei -30° C. Ausb.: 2.6 g (95%) **16a**.

(b) Eine Lösung von 0.44 g (0.65 mmol) 17 in 15 ml CH_2Cl_2 wurde innerhalb von 15 min mit 0.39 g (4.0 mmol) einer wäßrigen HCl-Lösung (37%) versetzt. Nach Zugabe von 10 ml Wasser wurde 1.5 h im Zweiphasensystem gerührt. Anschließend wurde die wäßrige Phase abgetrennt und mit 5 ml CH_2Cl_2 gewaschen. Nach

Abziehen des Lösungsmittels i. Vak. erhielt man das Rohprodukt, das zur weiteren Reinigung aus heißem Methanol umkristallisiert wurde. Dabei kristallisierten aus der auf Raumtemp. abgekühlten Lösung innerhalb von 14 d blaßgelb farbene Kristalle der Zusammensetzung **16b** · 2MeOH aus, die röntgenstrukturanalytisch untersucht wurden. Beim Trocknen i. Vak. zerfielen die Kristalle offenbar unter Abgabe des gebundenen Methanols zu einem amorphen Pulver. Ausb. 0.53 g (92%) **16b**.

(c) Zu einer Suspension von 1.58 g (4.1 mmol) PdCl₂(PhCN)₂ in 40 ml Methanol wurde im Verlauf von 90 min eine Lösung von 2.04 g (8.2 mmol) **9** in 40 ml Methanol getropft. Es wurde 1 h nachgerührt. Anschließend wurden unlösliche Anteile abfiltriert und die gelbe Reaktionslösung i. Vak. (40°C, 0.1 mbar) eingeengt. Das verbleibende gelborangefarbene Pulver wurde aus Methanol/Petrolether umkristallisiert. Ausb.: 2.5 g (91%) **17**.

16a: Gef.: C, 22.36; H, 5.33, N 6.72. $C_{24}H_{66}Br_8N_6$ -P₂Pd (1246.4) ber.: C 23.13; H 5.34; N, 6.74%.

16b: Gef.: C, 31.60; H, 7.41; N, 9.58. $C_{24}H_{66}Cl_8N_6$ -

 $\begin{array}{l} P_2 Pd \ (890.8) \ \text{ber.:} \ C, \ 32.36; \ H, \ 7.47; \ N, \ 9.43\%. \\ \textbf{17:} \ \text{Gef.:} \ C, \ 42.14; \ H, \ 8.62; \ N, \ 11.70. \ C_{24} H_{60} Cl_2 N_6 \\ P_2 Pd \ (672.0) \ \text{ber.:} \ C, \ 42.89; \ H, \ 9.00; \ N, \ 12.51\%. \end{array}$

Tabelle 4

	$13 \cdot 0.5 H_2 O$	16b 2CH ₃ OH
Molmasse	499.1	954.9
Kristallgröße [mm]	$0.28 \times 0.34 \times 0.56$	$0.22 \times 0.55 \times 0.60$
Raumgruppe	Р3	C2/c
Gitterkonstanten a [Å]	13.373(2)	21.542(9)
b [Å]		13.276(4)
c [Å]	7.375(2)	16.599(5)
β [°]		97.10(3)
Formeleinheiten Z	2	4
Zellvolumen [Å ³]	1142.2(4)	4711(3)
Dichte d_{her} [Mg m ⁻³]	1.451	1.346
Temperatur [K]	293	293
F(000)	502	2000
μ (Mo K α) [cm ⁻¹]		
Absorptionskorrektur	semiempirisch	N/A
Strahlung	Μο Κ α	Μο Κ α
Monochromator	Graphit	Graphit
Gerät	Siemens R3m/V	Siemens R3m/V
Scan	ω	ω
2 O-Meßbereich [°]	4.0-45.0	4.0-60.0
ω -Scanbreite [°]	1.20	1.40
Scangeschwindigkeit	3.00-15.00	2.69-14.65
[° min ⁻¹]		
Reflexe, gemessen	1147	7015
Reflexe, unabhängig	1147	6716
Reflexe, beobachtet	935	5089
$[F_{\rm o} > 4.0\sigma(F)]$		
Parameter, verfeinert	77	268
R [%]	7.80	3.48
$R_{w}[\%]$	7.60	3.73
$\Delta \delta_{\rm max} \ [e{\rm \AA}^{-3}]$	1.11 / -0.93	+1.00/-0.58

Tabelle 5

Atomkoordinaten (×10⁴) und äquivalente isotrope Temperaturfaktoren (Å² ×10³) von **13** · 0.5H₂O; äquivalente isotrope U berechnet als ein Drittel des orthogonalen U_{ii} -Tensors

	x	y	z	U(eq)
Br(1)	315(3)	3531(3)	2007(4)	86(2)
P (1)	3333	6667	6580(2)	27(3)
N(1)	401(15)	3595(14)	7596(23)	48(5)
C(1)	2089(14)	5520(14)	7833(21)	84(10)
C(2)	1590(16)	4344(16)	6896(29)	58(8)
C(3)	123(20)	2391(15)	7290(30)	42(6)
C(4)	-688(21)	3583(30)	7157(37)	93(11)
O(1)	0	10000	3172(93)	104(28)
P(11)	6667	3333	3420(2)	103(8)
N(11)	9552(14)	6644(15)	2302(21)	48(5)
C(11)	8016(9)	4362(12)	2238(19)	84(7)
C(22)	8544(21)	5588(14)	3021(33)	58(10)
C(33)	9655(25)	7724(20)	3011(34)	42(8)
C(44)	10600(17)	6622(22)	2897(35)	93(7)
O (11)	6667	3333	8481(76)	104(18)

5.8. Kristallstrukturanalysen von $13 \cdot 0.5 H_2O$ und 16b $\cdot 2MeOH$

Die experimentellen Daten zu den Kristallstrukturanalysen von $13 \cdot 0.5H_2O$ und $16b \cdot 2MeOH$ sind in Tabellen 4-6 zusammengefaßt. Die Strukturen wurden durch direkte Methoden gelöst und nach der Methode der kleinsten Quadrate verfeinert. Die Gewichtung erfolgte nach $w^{-1} = \sigma^2(F) + pF^2$ (p = 0.0001). Die

Tabelle 6

Atomkoordinaten (×10⁴) und äquivalente isotrope Temperaturfaktoren (Å² ×10³) von **16b** · 2CH₃OH; äquivalente isotrope U berechnet als ein Drittel des orthogonalen U_{ii} -Tensors

	x	у	z	<i>U</i> (eq)
Pd	0	2444(1)	2500	27(1)
Cl(1)	816(1)	2524(1)	1747(1)	50(1)
CI(2)	594(1)	5713(1)	1252(1)	51(1)
CI(3)	746(1)	8947(1)	3944(1)	57(1)
Cl(4)	2465(1)	9080(1)	467(1)	59(1)
P(1)	669(1)	2516(1)	3702(1)	28(1)
N(1)	2273(1)	868(2)	3617(2)	49(1)
N(2)	645(1)	1219(2)	5983(1)	38(1)
N(3)	811(1)	5617(2)	3858(1)	36(1)
C(1)	1492(1)	2244(2)	3660(2)	33(1)
C(2)	1614(1)	1185(2)	3365(2)	41(1)
C(3)	2379(2)	-175(3)	3342(3)	74(2)
C(4)	2736(1)	1570(3)	3341(3)	66(1)
C(5)	453(1)	1717(2)	4518(1)	32(1)
C(6)	841(1)	1881(2)	5334(2)	37(1)
C(7)	822(2)	148(2)	5898(2)	51(1)
C(8)	905(2)	1601(3)	6796(2)	67(1)
C(9)	677(1)	3788(2)	4116(2)	34(1)
C(10)	924(1)	4572(2)	3576(2)	34(1)
C(11)	1094(2)	5837(2)	4693(2)	51(1)
C(12)	1023(2)	6363(2)	3287(2)	58(1)
0	2329(2)	1053(3)	1414(2)	103(1)
C(13)	2167(3)	1819(4)	834(4)	119(3)

Wasserstoffatome wurden in idealisierten Positionen (Reitermodell, C-H = 0.95 Å) angenommen. Die Nichtwasserstoffatome von **16b** · 2MeOH erhielten anisotrope Temperaturfaktoren. Aufgrund der Pseudosymmetrie sind die Auslenkungs- und Lageparameter der Atome der unabhängigen Moleküle von **13** · 0.5H₂O (das zwei unabhängige Wassermoleküle enthält) stark korreliert. Eine anisotrope Verfeinerung der N-, C- und O-Atome war daher nicht sinnvoll. Die Berechnungen erfolgten mit dem Programmsystem SHELXTL [32].

5.9. Potentiometrische Titrationen

Die potentiometrischen Titrationen wurden unter Argon mit einer computer-gesteuerten Einheit (Metrohm 682 mit Dosimat 665) bei 25°C mit 0.1 m NaOH (carbonatfrei) durchgeführt. Die Kalibrierung des pH-Meters erfolgte mit Standard-Pufferlösungen (Riedel de Haen pH 4.008, 6.865, 9.180). Für die Auswertung der potentiometrischen Daten wurde das Programm BEST [33] eingesetzt.

Dank

Diese Arbeit wurde mit Mitteln des Bundesministeriums für Forschung und Technologie gefördert. Dem Fonds der Chemischen Industrie gilt unser Dank für finanzielle Unterstützung.

Literatur und Bemerkungen

- [1] Teil IV: F. Bitterer, S. Kucken und O. Stelzer, Chem. Ber., 128 (1995) 275.
- [2] (a) W.A. Herrmann, J.A. Kulpe, J. Kellner und H. Riepl, *Rep. DE 3 921 295 A13.1.1991*, Hoechst AG; W.A. Herrmann, *Hoechst High Chem. Magazin, 13* (1992) 15; W.A. Herrmann, J.A. Kulpe, W. Konkol, H.W. Bach, W. Gick, E. Wiebus, T. Müller und H. Bahrmann, *Rep. DE-B 3822036* (1988) [*C.A. 113* (1990) 100262 g].
 - (b) E.G. Kuntz, French Patent 2314190, 1975 [*C.A.* 87 (1977) 101944 n], Rhône-Poulenc; *Chem. Tech.*, (1987) 570; L. Bexten, B. Cornils und D. Kupies, *Rep. DE* 3431643 A1 (13. 3. 1986), Ruhrchemie AG; W.A. Herrmann, J.A. Kulpe, W. Konkol und H. Bahrmann, *J. Organomet. Chem.*, 389 (1990) 85.
- [3] G. Peiffer, S. Chhan, A. Bendayan, B. Waegell und J.P. Zahra, J. Mol. Catal., 59 (1990) 1; R.T. Smith und M.C. Baird, Inorg. Chim. Acta, 62 (1982) 135.
- [4] R.G. Nuzzo, S.L. Haynie, M.E. Wilson und G.M. Whitesides, J. Org. Chem., 46 (1981) 2861.
- [5] U. Nagel und E. Kinzel, Chem. Ber., 119 (1986) 1731.
- [6] I. Toth und B.E. Hanson, Tetrahedron: Asymmetry, 1 (1990) 895.
- [7] D.J. Brauer, J. Fischer, S. Kucken, K.P. Langhans, O. Stelzer und N. Weferling, Z. Naturforsch., 49b (1994) 1511.
- [8] J.G. Verkade und J.A. Mosbo in J.G. Verkade und L.D. Quin (eds.), Phosphorus-31 NMR-Spectroscopy in Stereochemical Analysis, VCH, Deerfield Beach, FL (1987).

- [9] R.T. Smith, R.K. Ungar, L.J. Sanderson und M.C. Baird, Organometallics, 2 (1983) 1138.
- [10] P.S. Sheridan in Wilkinson, R.D. Gillard und J.A. McCleverty (eds.), *Comprehensive Coordination Chemistry*, Pergamon, Oxford, 1987.
- [11] E.G. Finer und R.K. Harris, in J.W. Emsley, J. Feeney und L.H. Sutcliffe (eds.), *Progress in Nuclear Magnetic Resonance Spec*troscopy, Vol. 6 Pergamon, Oxford, 1971.
- [12] J.A. Rahn, M.S. Holt, M. O'Neil-Johnson und J.H. Nelson, *Inorg. Chem.*, 27 (1988) 1316.
- [13] H.C. Clark und K.R. Dixon, J. Am. Chem. Soc., 91 (1969) 596;
 K.R. Dixon und D.J. Hawke, Can. J. Chem., 49 (1971) 3252;
 F.H. Allen und K.M. Gabuji, Inorg. Nucl. Chem. Lett. 7, (1971) 888.
- [14] P.F. Meier, A.E. Merbach, M. Dartiguenave und Y. Dartiguenave, *Inorg. Chem.*, 18 (1979) 610.
- [15] W.J. Louch und D.R. Eaton, *Inorg. Chim. Acta, 30* (1978) 243.
 R.S. Berry, J. Chem. Phys., 32 (1960) 933; F.A. Cotton, Acc. Chem. Res., 3 (1970) 266.
- [16] W.L. Louw, D.J.A. deWaal, C.J. Kruger, J. Chem. Soc., Dalton Trans. (1976) 2364.
- [17] R.G. Pearson, H. Sobel und J. Songstad, J. Am. Chem. Soc., 90 (1968) 319.
- [18] F.A. Cotton und R.V. Parish, J. Chem. Soc., (1960) 1440; H. Haas und R.K. Sheline, J. Chem. Phys., 47 (1967) 2996.
- [19] R.P. Hughes in G. Wilkinson, F.G.A. Stone und E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1987.
- [20] O. Kahn und M. Bigorgne, J. Organomet. Chem., 10 (1967) 137; J. Chim. Phys., 66 (1969) 874. M.N. Golovin, M. Rahman, J.E. Belmonte und W.P. Giering, Organometallics, 4 (1985) 1981.
- [21] C.A. Streuli, Anal. Chem., 31 (1959) 1653; Anal. Chem., 32 (1960) 985.
- [22] S. Kucken, O. Stelzer, unveröffentliche Arbeiten.
- [23] L. Maier, in G.M. Kosolapoff und L. Maier (eds.), Organic Phosporus Compounds, Wiley, New York, 1972; W.A. Henderson und C.A. Streuli, J. Am. Chem. Soc., 82 (1960) 5791.
- [24] H.R. Hudson in F.R. Hartley (ed.) The Chemistry of Functional Groups – The Chemistry of Organophosphorus Compounds, Wiley, Chichester, 1990.
- [25] N.F. Hall und M.R. Sprinkle, J. Am. Chem. Soc., 54 (1932) 3469; J.W. Smith, in S. Patai (ed.) Basicity and Complex Formation. The Chemistry of Functional Groups - The Chemistry of the Amino Group, Interscience, London, 1968.
- [26] G. Anderegg und Z. Melichar, Helv. Chim. Acta, 76 (1993) 1964.
- [27] S.O. Grim und R.L. Keiter, *Inorg. Chim. Acta, 4* (1970) 56;
 B.E. Mann, C. Masters, B.L. Shaw, R.M. Slade und R.E. Stainbank, *J. Chem. Soc. (A)*, (1970) 881.
- [28] W. Bähr und H. Theobald, Organische Stereochemie, Begriffe und Definitionen, Springer, Berlin, 1973.
- [29] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson und R. Taylor, J. Chem. Soc., Dalton Trans. (1989) S.1.
- [30] H.D. Murdoch und R. Henzi, J. Organomet. Chem., 5 (1966) 463.
- [31] G. Giordano und R.H. Crabtree, Inorg. Synth., 19 (1979) 218.
- [32] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-59020, der Autoren und des Zeitschriftenzitats angefordert werden.
- [33] A.E. Martell und R.J. Motekaitis, Determination and Use of Stability Constants, VCH, New York, 1992.